Conservação de alimentos por antimicrobianos de plantas
Resumo
Alimento seguro é um requisito para uma vida saudável. As doenças transmitidas por alimentos são um problema global com impacto significativo na saúde humana. Os surtos de origem alimentar criaram um desafio para as autoridades reguladoras de alimentos e saúde a fim de controlar os microrganismos patogênicos. Vários métodos de conservação são utilizados para atender as demandas em relação à segurança microbiológica, valores nutricionais e propriedades sensoriais dos alimentos, dentre esses o uso de conservantes sintéticos. Todavia, os conservantes químicos têm causado alguns problemas de saúde. Nesse cenário, há uma crescente demanda por alimentos mais saudáveis, impulsionando investigações para fontes alternativas de conservantes naturais. As plantas são valiosas fonte de compostos bioativos com atividades antimicrobianas. Contudo, a variação na eficácia desses compostos contra microrganismos em sistemas laboratoriais e em sistemas alimentares reais é o principal determinante do seu uso em alimentos. Este artigo focará nos produtos derivados de plantas com potencial uso para o controle de microrganismos patogênicos e deterioradores de alimentos.
Texto completo:
PDFReferências
ABDOLLAHZADEH, E., REZAEI, M., HOSSEINI, H. Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, v. 35, n.1, p.177-183, 2014. DOI: 10.12989/eas.2017.12.1.047
ALMELA, L., SÁNCHEZ-MUNOZ, B., FERNÁNDEZ-LÓPEZ, J. A., ROCA, M. J., RABE, V. Liquid chromatographic–mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. Journal of Chromatography, v.1120, p.221-229, 2006. DOI: 10.1016/j. chroma.2006.02.056
BAGAMBOULA, C.F.; UYTTENDAELE, M.; DEBEVERE, J. Antimicrobial effect of spices and herbs on Shigella sonnei and Shigella flexneri. Journal of Food Protection, v.66, p.668-673, 2003.
BAJPAI, V.K., BAEK, K.-H., KANG, S.C. Control of Salmonella in foods by using essential oils: a review. Food Research International, v.45, p.722-734, 2012.
BAHRAMI, A.; DELSHADI, R.; JAFARI, S. M.; WILLIAMS, L. Nanoencapsulated nisin: An engineered natural antimicrobial system for the food industry. Trends in Food Science & Technology, v.94, p.20–31, 2019. https://doi.org/10.1016/j.tifs.2019.10.002
BAHRAMI, A.; MOADDABDOOST BABOLI, Z.; SCHIMMEL, K.; JAFARI, S.M.; WILLIAMS, L. Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends in Food Science & Technology, v.96, p.61–78, 2020. https://doi.org/ 10.1016/j.tifs.2019.12.009
BARBOZA, G.R.; ALMEIDA, J.M.; SILVA, N.C.C. Use of natural substrates as an alternative for the prevention of microbial contamination in the food industry. Food Science and Technology, 2021. DOI: https://doi.org/10.1590/fst.05720. ISSN 1678-457X (Online)
BATIHA, G.E-S.; HUSSEIN, D.E.; ALGAMMAL, A.M.; GEORGE, T.T.; JEANDET, P. Application of natural antimicrobials in food preservation: Recent views. Food Control, v.126, 2021, 108066.
https://doi.org/10.1016/j.foodcont.2021.108066
BURT, S. A.; REINDERS, R. D. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Letters in Applied Microbiology, v.36, p.162-167, 2004.
CALO J.R., CRANDALL P.G., O’BRYAN C.A., RICKE S.C. Essential oils as antimicrobials in food systems - A Review. Food Control, 2015. Doi: 10.1016/j.foodcont.2014.12.040.
Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding molecules to food, pros and cons: a review on synthetic and natural food additives. Comprhensive Reviws in Food Science and Food Safety, v.13, p.377-399, 2014.
Castellano, P.; Pérez, I.M.; Blanco, M.M.; Fontana, C.; Vignolo, G.M. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms, v.5, n.3, p.38, 2017. Doi:10.3390/microorganisms5030038
CHAIEB, K., HAJLAOUI, H., ZMANTAR, T., KAHLA-NAKBI, A. B., ROUABHIA, M., MAHDOUANI, K., & BAKHROUF, A. The chemical composition and biological activity of clove essential oil,Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research, v.21, n.6, p.501-506, 2007. Doi:10.1002/ptr.2124
CHALESHTORI, S., ROKNI, N., RAFIEIAN-KOPAEI, M., DERIS, F., SALEHI, E. Antioxidant and antibacterial activity of basil (Ocimum basilicum L.) essential oil in beef burger. Journal of Agricultural Science and Technology, v.17, n.4, p.817-826, 2015.
CHIBANE, L. B.; DEGRAEVE, P.; FERHOUT, H.; BOUAJILA, J.; OULAHAL, N. Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, v.99, n.4, p.1457-1474, 2018.
CHOUHAN, S.; SHARMA, K.; GULERIA, S. Antimicrobial activity of some essential oils - Present status and future perspectives. Medicine, v.4, n.3, p.58, 2017. DOI: 10.3390/medicines4030058
Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic plants as a source of bioactive compounds. Agriculture, v.2, p.228-243, 2012.
COOLS, T. L., STRUYFS, C.; CAMMUE, B. P.; THEVISSEN, K. Antifungal plant defensins: Increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiology, v.12, n.5, p.441-4542017. DOI:10.2217/fmb-2016-0181
DANNENBERG, G., FUNCK, G.D., SILVA, W.P., FIORENTINI, Â.M. Essential oil from pink pepper (Schinus terebinthifolius Raddi): chemical composition, antibacterial activity and mechanism of action. Food Control, v.95, p.115-120, 2019. http://dx.doi.org/10.1016/j.foodcont.2018.07.034.
DELSHADI, R.; BAHRAMI, A.; ASSADPOUR, E.; WILLIAMS, L.; JAFARI, S. M. Nano/microencapsulated natural antimicrobials to control the spoilage microorganisms and pathogens in different food products. Food Control, v.128, 2021. 108180.
https://doi.org/10.1016/j.foodcont.2021.108180
DHIFI, W., BELLILI, S., JAZI, S., BAHLOUL, N., MNIF, W. Essential oils’ Chemical characterization and investigation of some biological activities: A critical review. Medicine, v.3, n.4, p.25, 2016. DOI:10.3390/medicines3040025
DHIMAN, R.; KUMAR, A. N. 2020. Efficacy of Plant Antimicrobials as Preservative in Food. Food Preservation and Waste Exploitation. doi:10.5772/intechopen.83440
DORMAN, H.; DEANS, S. Antimicrobial agents from plants: antibacterial 1110 activity of plant volatile oils. Journal of Applied Microbiology, v.88, n.2, p.308-316, 2000.
EMBUSCADO, M. E. Spices and herbs: Natural sources of antioxidants–a mini review. Journal of Functional Foods, v.18, p.811-819, 2015.
FIGUEIREDO, A. R.; CAMPOS, F.; DE FREITAS, V.; HOGG, T.; COUTO, J. A. Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. Food Microbiology, v.25, n1, p.105-112, 2008.
FRIEDMAN, M., HENIKA, P. R., MANDRELL, R. E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection, v.65, n.10, p.1545-1560, 2002.
GOCHEV, V.; DOBREVA, A.; GIROVA, T.; STOYANOVA, A. Antimicrobial activity of essential oil from Rosa alba. Biotechnology and Biotechnological Equipment, v.24, p.512-515, 2010.
GRIFFIN, S. G.; MARKHAM, J. L.; LEACH, D. N. An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. Journal of Essential Oil Research, v.12, p.249-255, 2000.
GUNNISON, A. F.; JACOBSEN, D. W.; SCHWARTZ, H. J. Sulfite hypersensitivity: A critical review. Critical Reviews in Toxicology, v.17, p.186-214, 1987.
Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology, v.124, p.91-97, 2008.
GYAWALI, R.; IBRAHIM, S. A. Natural products as antimicrobial agent. Food Control, 2014. Doi: 10.1016/j.foodcont.2014.05.047
HARRIS, P. W, YANG, S. H, MOLINA, A., LÓPEZ, G., MIDDLEDITCH, M., BRIMBLE, M. A. Plant antimicrobial peptides snakin-1 and snakin-2: Chemical synthesis and insights into the disulfide connectivity. Chemistry–A European Journal, v.20, n.17, p.5102-5110, 2014. DOI: 10.1002/chem.201303207
Hayek, S.A.; Gyawali, R.; Salam, I.A. Antimicrobial natural products. In: Méndez-Vilas, A. (Ed.), Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, v.2, p.910-921, 2013.
HEITZ, A., AVRUTINA, O., LE-NGUYEN, D., DIEDERICHSEN, U., HERNANDEZ, J.-F., GRACY, J., CHICHE, L. Knottin cyclization: impact on structure and dynamics. BMC Structural Biology, 8(1), 54. (2008). doi:10.1186/1472-6807-8-54
HERNÁNDEZ-OCHOA, L., AGUIRRE-PRIETO, Y.B., NEVÁREZ-MOORILLÓN, G.V., GUTIERREZ-MENDEZ, N., SALAS-MUÑOZ, E. Use of essential oils and extracts from spices in meat protection. Journal of Food Science and Technology, v.51, n.5, p.957–963, 2011. Doi:10.1007/s13197-011-0598-3
HINTZ, T., MATTHEWS, K. K., DI, R. The use of plant antimicrobial compounds for food preservation. BioMed Research International, v.12, 2015. DOI:10.1155/2015/246264
Hygreeva, D.; Pandey, M.C.; Radhakrishna, K. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Science, v.98, p.47–57, 2014.
Kaur, R.; Kaur, L. Encapsulated natural antimicrobials: A promising way to reduce microbial growth in different food systems. Food Control, 2020.
doi: https://doi.org/10.1016/j.foodcont.2020.107678.
KIM, S. J.; CHO, A. R.; HAN, J. Antioxidant and antimicrobial activities of leafy green vegetable extracts and their application to meat product preservation. Food Control, v.29, p.112-120, 2013.
Kim, S.Y.; Kang, D.H.; Kim, J.K.; Ha, Y.G.; Hwang, J.Y.; Kim, T.; Lee, S.H. Antimicrobial activity of plant extracts against Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes on fresh lettuce. Journal of Food Science, v.76, M41-M46, 2011.
MACHADO, T.F., PEREIRA, R.C.A., SOUSA, C.T., BATISTA, V.C.V., PEREIRA, I.M.C. Atividade antimicrobiana do óleo essencial de capim-limão. Fortaleza: Embrapa Agroindústria Tropical, 2012. 15 p. Boletim de pesquisa e desenvolvimento / Embrapa Agroindústria Tropical; ISSN 1679-6543, 62.
MACHADO, T.F., GARRUTI, D.S., SILVEIRA, M.R.S., ARAÚJO, I.M.S., VARELA, M.S., JESUS FILHO, C.A. Impacto do uso de óleos essenciais na qualidade microbiológica e sensorial da alface. Fortaleza: Embrapa Agroindústria Tropical, 2020. 20 p. Boletim de pesquisa e desenvolvimento / Embrapa Agroindústria Tropical; ISSN 1679-6543, 201.
MARTÍNEZ-GRACIÁ, C., GONZÁLEZ-BERMÚDEZ, C. A., CABELLERO-VALCÁRCEL, A. M., SANTAELLA-PASCUAL, M., FRONTELA-SASETA, C. Use of herbs and spices for food preservation: advantages and limitations. Current Opinion in Food Science, v.6, p.38–43, 2015. doi:10.1016/j.cofs.2015.11.011
MENDONÇA, A., JACKSON-DAVIS, A., MOUTIQ, R., THOMAS-POPO, E. (2018). Use of natural antimicrobials of plant origin to improve the microbiological safety of foods. In S. C. Ricke, G. G. Atungulu, C. E. Rainwater & S. H. Park (Eds.), Food and feed safety systems and analysis. London: Academic Press.
Mirza, S.K.; Asema, U.; Kasim, S.S. To study the harmful effects of food preservatives on human health. Journal of Medicinal Chemistry and Drug Discovery, v.2, p.610–616. 2017.
MOLESINI, B., TREGGIARI, D., DALBENI, A., MINUZ, P., PANDOLFINI, T. Plant cystine-knot peptides: Pharmacological perspectives. British Journal of Clinical Pharmacology, v.83, n.1, p.63-70, 2017. DOI: 10.1111/bcp.12932
MURUGAN, K.; ANANDARAJ, K.; AL-SOHAIBANI, S. Antiaflatoxigenic food additive potential of Murraya koenigii: An in vitro and molecular interaction study. Foodservice Research International, v.52, n.1, p.8-16. 2013. DOI:10.1016/j.foodres.2013.02.001
NAWROT, R., BARYLSKI, J., NOWICKI, G., BRONIARCZYK, J., BUCHWALD, W., GOŹDZICKA-JÓZEFIAK, A. Plant antimicrobial peptides. Folia microbiologica, v.59, p.181-196, 2014.
NAZZARO, F., FRATIANNI, F., DE MARTINO, L., COPPOLA, R., DE FEO, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals, v.6, n.12, p.1451–1474, 2013. doi:10.3390/ph6121451
NEGI, P.S. Plants extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. International Journal of Food Microbiology, v.156, p.7-17, 2012.
NGUYEN, G. K., LIAN, Y., PANG, E. W., NGUYEN, P. Q., TRAN, T. D., TAM, J. P. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. The Journal of Biological Chemistry, v.288, n.5, p.3370-3380, 2013. DOI: 10.1074/jbc.M112.415356
ODINTSOVA, T., EGOROV, T. Plant Antimicrobial Peptides. In: H. R. Irving; C. Gehring (Eds.); Plant Signaling Peptides. v. 16, p.107–133, 2012. Berlin, Heidelberg: Springer Berlin Heidelberg.
PAVELA, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Industrial Crops and Products, v.76, p.174-187, 2015. DOI: 10.1016/j.indcrop.2015.06.050
PERIASAMY, V. S., ATHINARAYANAN, J., ALSHATWI, A. A. Anticancer activity of na ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrasonics Sonochemistry. v.31, p.449-455, 2016. DOI:10.1016/j.ultsonch.2016.01.035
PISOSCHI, A. M.; POP, A.; GEORGESCU, C.; TURCUS, N. K.; OLAH, E. M. An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry (2018), doi:10.1016/j.ejmech.2017.11.095.
PORTO, W. F., FRANCO, O. L. Theoretical structural insights into the snakin/GASA family. Peptides, v. 44, p.163–167, 2013.
RAI, M., PANDIT, R., GAIKWAD, S., KÖVICS, G. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. Journal of Food Science and Technology, v.53, n.9, p.3381–3394. 2016. doi:10.1007/s13197-016-2318-5
RAO, J., CHEN, B., MCCLEMENTS, D. J. Improving the efficacy of essential oils as antimicrobials in foods: mechanisms of action. Annual Review of Food Science and Technology, v.10 n.1, p.365-387, 2019. http://dx.doi.org/10.1146/annurev-food-032818-121727. PMid:30653350.
RUBINOVICH L., S. RUTHSTEIN, WEISS, D. The Arabidopsis cysteine-rich GASA5 is a redox-active metalloprotein that suppresses gibberellin responses. Molecular Plant, v.7, p. 244–247, 2014.
SALAS, C. E., BADILLO-CORONA, J. A., RAMÍREZ-SOTELO, G., OLIVER-SALVADOR, C. Biologically active and antimicrobial peptides from plants. BioMed Research International. 2015;1-11. DOI:10.1155/2015/102129
SANTOS, I. S. D., CARVALHO, A. D. O., SOUZA-FILHO, G. A. D., NASCIMENTO, V. V. D., MACHADO, O. L., GOMES, V. M. Purification of a defensin isolated from Vigna unguiculata seeds, its functional expression in Escherichia coli, and assessment of its insect α-amylase inhibitory activity. Protein expression and purification, v.71, p.8-15, 2010.
SHAN, B.; CAI, Y.Z., BROOKS, J.D.; CORKE, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. International Journal of Food Microbiology, v.117, p.112-119, 2007.
SINGH G, MARIMUTHU P, CATALAN C, DELAMPASONA, M.P. Chemical, antioxidant and antifungal activities of volatile oil of black pepper and its acetone extract. Journal of the Science of Food and Agriculture, v.84,14, p.1878-1884, 2004. DOI: 10.1002/jsfa.1863
SILVA, O. N., MULDER, K. C., BARBOSA, A. A., OTERO-GONZALES, A. J., LÓPES-ABARRATEGUI, C., DIAS, S. C., REZENDE, T. M., FRANCO, O. L. (2011) Exploring the pharmacological potential of promiscuous host-defense peptides: from natural screenings to biotechnological applications. Frontiers in Microbiology, 2. doi:10.3389/fmicb.2011.00232
SINHA S, ZHENG L, MU Y, NG WJ, BHATTACHARJYA S. Structure and interactions of a host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination. Scientific Reports. 2017;7(1):17795. DOI:
1038/s41598-017-18102-6
SOKOVIC, M.; GLAMOCLIJA, J.; MARIN, P. D.; BRKIC, D.; GRIENSVEN, L. J. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, v.15, p.7532-7546, 2010.
SRINIVASAN, K. Antioxidant potential of spices and their active constituents. Critical Reviews in Food Science and Nutrition, v.54, p.352–372, 2014.
STOILOVA, I., KRASTANOV, A., STOYANOVA, A., DENEV, P., GARGOVA, S. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chemistry, v.102, n.3 ,p.764-770, 2007. DOI: 10.1016/j. foodchem.2006.06.023
STOJKOVIĆ, D.; PETROVIĆ, J.; SOKOVIĆ, M.; GLAMOČLIJA, J., KUKIĆ, M. J.; PETROVIĆ, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. Journal of the Science of Food and Agriculture, v.93, n.13, p.3205-3208, 2013. doi: 10.1002/jsfa.6156,
TAJKARIMI, M., IBRAHIM, S. A., CLIVER, D. Antimicrobial herb and spice compounds in food. Food Control, v.21, p.1199–1218, 2010.
TAVARES, L. S., SANTOS, M. D., VICCINI, L. F., MOREIRA, J. S., MILLER, R. N., FRANCO, O. L. Biotechnological potential of antimicrobial peptides from flowers. Peptides, v.29, n.10, p.1842-1851, 2008. DOI: 10.1016/j.peptides.2008.06.003
TEIXEIRA, V., FEIO, M. J., BASTOS, M. Role of lipids in the interaction of antimicrobial peptides with membranes. Progress in lipid research, v.51, p.149-177, 2012.
TIWARI, B. K., VALDRAMIDIS, V. P., O’DONNELL, C. P, MUTHUKUMARAPPAN, K., BOURKE, P., CULLEN, P. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry, v.57, p.5987-6000, 2009. Doi:10.1021/jf900668n
THERY, T., ARENDT, E. K. Antifungal activity of synthetic cowpea defensin Cp-thionin II and its application in dough. Food Microbiology, v.73, p.111-121, 2018. DOI: 10.1016/j.fm.2018.01.006
TYAGI, A. K., BUKVICKI, D., GOTTARDI, D., TABANELLI, G., MONTANARI, C., MALIK, A., GUERZONI, M. E. Eucalyptus Essential Oil as a Natural Food Preservative:In VivoandIn VitroAntiyeast Potential. BioMed Research International, 2014, 1–9. doi:10.1155/2014/969143
WINIAS, S. Effect of cinnamaldehyde from cinnamon extract as a natural preservative alternative to the growth of Staphylococcus aureus bacteria. Indonesian Journal of Tropical and Infectious Disease, v.2,n.1, p.38-41, 2015
WONG, K. H., TAN, W. L., KINI, S. G., XIAO, T., SERRA, A., SZE, S. K., TAM, J. P. (2017). Vaccatides: Antifungal Glutamine-Rich Hevein-Like Peptides from Vaccaria hispanica. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01100
WONG, J. H., ZHANG, X. Q., WANG, H. X., NG, T. B. A mitogenic defensin from white cloud beans (Phaseolus vulgaris). Peptides, v.27, p.2075-2081, 2006.
Xue, J.; Davidson, P.M.; Zhong, Q. Thymol nanoemulsified by whey protein maltodextrin conjugates: The enhanced emulsifying capacity and anti-listerial properties in milk by propylene glycol. Journal of agricultural and food chemistry, v.61, p.12720−12726, 2013.
YEATS, T. H, ROSE, J. K. C. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Science, v.17, p.191-198, 2008. DOI: 10.1110/ ps.073300108
ZHANG, Y., LIU, X., WANG, Y., JIANG, P., QUEK, S. Y. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, v.59, p.282-289, 2016. http://dx.doi.org/10.1016/j.foodcont.2015.05.032.
Zhang, W.; Xiao, S.; Samaraweera, H.; Lee, E.J., Ahn, D.U. Improving functional value of meat products. Meat Science, v.86, p.15-31, 2010.
DOI: https://doi.org/10.24120/clp.v0i232.89
Apontamentos
- Não há apontamentos.